= Fibonacci sequence The Fibonacci sequence is defined through the recurrence relation $F_n = F_(n-1) + F_(n-2)$. It can also be expressed in _closed form:_
text( set font: stringarray, set fallback: boolean, set style: string, set weight: integerstring, set stretch: ratio, set size: length, set fill: color, set tracking: length, set spacing: relative length, set baseline: length, set overhang: boolean, set top-edge: lengthstring, set bottom-edge: lengthstring, set lang: string, set region: nonestring, setdir: autodirection, set hyphenate: autoboolean, set kerning: boolean, set alternates: boolean, set stylistic-set: noneinteger, set ligatures: boolean, set discretionary-ligatures: boolean, set historical-ligatures: boolean, set number-type: autostring, set number-width: autostring, set slashed-zero: boolean, set fractions: boolean, set features: arraydictionary, content, ) -> content
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#set text( font: "New Computer Modern", size: 10pt, style:"italic", )
With a set rule.
#emph(text(blue)[ With a function call. ])
#text(28pt)[With a set rule.]
With a set rule.
页面
通过#set page()设置页面格式
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
page( set paper: string, set width: autolength, set height: autolength, set flipped: boolean, set margin: autorelative lengthdictionary, set columns: integer, set fill: nonecolor, set numbering: nonestringfunction, set number-align: alignment2d alignment, set header: nonecontent, set header-ascent: relative length, set footer: nonecontent, set footer-descent: relative length, set background: nonecontent, set foreground: nonecontent, content, ) -> content
par( set leading: length, # 行间距 set justify: boolean, # 是否行中对齐文本 set linebreaks: autostring, # 如何确定换行符 set first-line-indent: length, # 首行缩进 set hanging-indent: length, # 除首行外其余行的缩进 set body: content, ) -> content
1 2 3 4 5 6 7 8 9 10 11 12
#set par(first-line-indent: 2em, justify: true)
We proceed by contradiction. Suppose that there exists a set of positive integers $a$, $b$, and $c$ that satisfies the equation $a^n + b^n = c^n$ for some integer value of $n > 2$.
Without loss of generality, let $a$ be the smallest of the three integers. Then, we ...
标题
通过#set heading()设置标题格式
1 2 3 4 5 6
heading( set level: integer, # 标题深度 set numbering: nonestringfunction, # 标题序号 set outlined: boolean, # 下划线 content, ) -> content