Spin-orbit coupling

计算自旋轨道耦合

Spin-orbit coupling

自旋轨道耦合


Spin-orbit coupling (SOC)自旋轨道耦合是不同自旋多重度的混合状态的相对论效应。例如:单重态和多重态。在狄拉克方程框架中-最接近真实物理学-解释了量子力学中的相对性-在自旋和规则角动量之间没有区别,因此在实践中没有纯自旋状态这样的东西。
通常,这是一种主要影响重原子系统的效应,所以不用被包含在每个计算中。
有很多实验现象源于此,如磷光、激发态之间的系统交叉、TADF、甚至非常规自旋态的反应性。
例如,尝试预测溶液中Ir(ppy)3复合物和磷光颜色和荧光寿命。
这是一种黄绿色发光体,是用于制造OLED的重要化合物
../_images/Ir.png

SOC with TD-DFT

在ORCA中,有很多方法在不同的理论水平计算中计算SOC,最简单的方法是TD-DFT
在进入更复杂的铱(III)络合物之前,我们先从简单甲醛开始。甲醛是有机分子并具有很强的SOC
那是因为 π−π∗ 和 n−π∗ 激发态可以与其他激发态正交,并且自旋的变化可以通过角动量的变化来补偿跃迁期间的电子。为了计算激发态及运行SOC ,例如使用 B3LYP:

1
2
3
4
5
6
7
8
9
10
 !B3LYP DEF2-SVP
%TDDFT NROOTS 5
DOSOC TRUE
END
* xyz 0 1
O 0.000000 0.000000 0.601105
C -0.000000 0.000000 -0.598757
H 0.000000 -0.944973 -1.202781
H 0.000000 0.944973 -1.202781
*

额外输入是%TDDFT DOSOC TRUE
输出将会输出其他信息,不仅仅计算单重态,还计算三重态

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
********************************
* Entering triplet calculation *
********************************

[...]

****Iteration 0****
<<< Triplet sigma vectors requested >>>

Memory handling for direct AO based CIS:
Memory per vector needed ... 1 MB
Memory needed ... 0 MB
Memory available ... 512 MB
Number of vectors per batch ... 512
Number of batches ... 1
[...]

打印激发对状态的贡献

1
2
3
4
5
6
7
8
9
10
11
------------------------------------
TD-DFT/TDA EXCITED STATES (TRIPLETS)
------------------------------------

the weight of the individual excitations are printed if larger than 1.0e-02

STATE 1: E= 0.123186 au 3.352 eV 27036.2 cm**-1 <S**2> = 2.000000
7a -> 8a : 0.996653 (c= 0.99832517)

STATE 2: E= 0.219375 au 5.969 eV 48147.2 cm**-1 <S**2> = 2.000000
6a -> 8a : 0.993680 (c= -0.99683484)

在输出单重态和三重态之后,会输出SOC部分

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
------------------------------
TD-DFT/TDA SPIN-ORBIT COUPLING
------------------------------

[...]
------------------------------------------------------------------------------
ORCA SPIN-ORBIT COUPLING CALCULATION
------------------------------------------------------------------------------

GBW file ... form.gbw
Input density ... form.cisp0
Output integrals ... form.cis
Operator type ... Mean-field/Effective potential
One-Electron Terms ... 1
Coulomb Contribution ... 2
Exchange Contribution ... 3
Correlation Contribution ... 0
Maximum number of centers ... 4
[...]

The calculation of these integrals can take some time. For larger systems, one can use the RI-SOMF(1X) on the main input, that will invoke the use of RI for the Coulomb part. This will accelerate the calculation significantly with only a small error associated

Analysing the SOC-TD-DFT Output

会以笛卡尔坐标输出矩阵元素⟨Tn|Hso|Sn⟩

1
2
3
4
5
6
7
8
9
10
--------------------------------------------------------------------------------
CALCULATED SOCME BETWEEN TRIPLETS AND SINGLETS
--------------------------------------------------------------------------------
Root <T|HSO|S> (Re, Im) cm-1
T S Z X Y
--------------------------------------------------------------------------------
1 0 ( 0.00 , 59.19 ) ( 0.00 , 0.00 ) ( -0.00 , 0.00 )
1 1 ( 0.00 , -0.00 ) ( 0.00 , -0.00 ) ( -0.00 , 0.00 )
1 2 ( 0.00 , 0.00 ) ( 0.00 , -0.00 ) ( -0.00 , 7.52 )
1 3 ( 0.00 , -0.00 ) ( 0.00 , -49.15 ) ( -0.00 , 0.00 )

This is expected from the analysis of the components of these states. The T1T1 is mostly composed of a HOMO-LUMO transition, which makes it a n−π∗n−π∗ excited state. A transition from that to the ground state involves a change of angular momentum, which then facilitates the change of spin state by increasing the SOC

../_images/form.png

x下一部分是由SOC引起的基态稳定能量和新混合SOC状态的能量l列表:

1
2
3
4
5
6
7
8
9
SOC stabilization of the ground state:  -0.2024 cm-1
Eigenvalues of the SOC matrix:

State: cm-1 eV
0: 0.00 0.0000
1: 27036.26 3.3521
2: 27036.27 3.3521
3: 27036.45 3.3521
4: 32861.46 4.0743

其次是他们的组成,他们是单重态和三重态的混合物

1
2
3
4
5
6
7
8
9
10
11
12
13
            E(cm-1)  Weight      Real         Imag     : Root  Spin  Ms
STATE 0: 0.00
0.99999 -0.00683 -0.99997 : 0 0 0
STATE 1: 27036.26
0.50000 0.00000 -0.70710 : 1 1 -1
0.50000 0.00000 -0.70710 : 1 1 1
STATE 2: 27036.27
0.50000 -0.00000 0.70710 : 1 1 -1
0.50000 0.00000 -0.70710 : 1 1 1
STATE 3: 27036.45
0.99999 0.99994 0.01093 : 1 1 0
STATE 4: 32861.46
0.99999 -0.99938 0.03514 : 1 0 0

ORCA计算的基态SOC和DFT基态99.99%相等。

The second SOC state now, is a mixture of two spin sublevels of the first triplet (Root 1), those with angular momentum -1 and +1 in spherical harmonics. The third state is a similar mixture, the fourth state is again basically the S1S1, and so on.

In the end, the “spectrum” is also printed:

1
2
3
4
5
6
7
8
9
10
11
12
---------------------------------------------------------------------------------
SPIN ORBIT CORRECTED ABSORPTION SPECTRUM VIA TRANSITION ELECTRIC DIPOLE MOMENTS
---------------------------------------------------------------------------------
States Energy Wavelength fosc T2 TX TY TZ
(cm-1) (nm) (au**2) (au) (au) (au)
---------------------------------------------------------------------------------
0 1 27036.3 369.9 0.000000002 0.00000 0.00000 0.00016 0.00000
0 2 27036.3 369.9 0.000000001 0.00000 0.00010 0.00000 0.00000
0 3 27036.5 369.9 0.000000132 0.00000 0.00000 0.00000 0.00127
0 4 32861.5 304.3 0.000000000 0.00000 0.00000 0.00000 0.00000
0 5 48147.4 207.7 0.000000000 0.00000 0.00000 0.00001 0.00000
0 6 48147.4 207.7 0.000000000 0.00000 0.00000 0.00000 0.00000

请注意,现在即使是三重态也包含在光谱中,因为实际上,所有 SOC 状态都具有单重态和三重态的分量,并且会具有一定的强度。在这种情况下,SOC 只是不够强,无法使三重态到基态的转换非常明亮。

SOC on a Iridium(III) complex

Now let’s come back to the aforementioned example of a phosphorescent Iridium(III) complex. That is a case when the SOC is so strong that there are no clear singlets or triplets anymore, and the excited change change drastically due to coupling.

The first step is to optimize this heavy metal complex. We will look after the fac-Ir(ppy)3, for we have plenty of experimental data to compare with for that isomer. The optimization can be done running:

1
2
!B3LYP DEF2-TZVP OPT CPCM(CH2CL2) D4
* XYZFILE 0 1 fac-Irppy_guess.xyz

Here we use the B3LYP functional with the DEF2-TZVP basis, which in practice uses a pseudo-potential for heavy atoms such as Ir. This helps to accelerate the calculation and also somewhat accounts for the relativistic effects on the geometry, since the pseudo-potential are fitted to relativistic calculations.

We also use larger grids, which is important and such heavy atoms are present, together with CPCM for a solvation correction and the D4 for the dispersion interaction. The result is:

../_images/Ir_struc.png

1
2
3
4
5
6
7
8
!B3LYP ZORA ZORA-DEF2-TZVP SARC/J CPCM(CH2CL2) RI-SOMF(1X)
%TDDFT NROOTS 25
DOSOC TRUE
TDA FALSE
END
%BASIS NEWGTO IR "SARC-ZORA-TZVP" END
END
* XYZFILE 0 1 fac-Irppy_optimized.xyz

Now we do a full calculation with Relativistic corrections, using ZORA and its required basis. Note that we also need to specify the SARC-ZORA-TZVP basis for the Ir, as there is no simple ZORA-DEF2-TZVP for that. Here we added the RI-SOMF(1X) to accelerate the SOC integrals and choose the TDA FALSE to compute a full TD-DFT calculation, for later comparison.

In contrast to the formaldehyde, that had no heavy atom, the SOC matrix elements are much larger now:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
--------------------------------------------------------------------------------
CALCULATED SOCME BETWEEN TRIPLETS AND SINGLETS
--------------------------------------------------------------------------------
Root <T|HSO|S> (Re, Im) cm-1
T S Z X Y
--------------------------------------------------------------------------------
1 0 ( 0.00 , -178.70 ) ( 0.00 , -14.24 ) ( -0.00 , -17.11 )
1 1 ( 0.00 , 2.90 ) ( 0.00 , -12.51 ) ( -0.00 , -17.41 )
1 2 ( 0.00 , 3.48 ) ( 0.00 , -107.34 ) ( -0.00 , 26.81 )
1 3 ( 0.00 , 0.93 ) ( 0.00 , 24.18 ) ( -0.00 , 116.53 )
1 4 ( 0.00 , 17.00 ) ( 0.00 , 351.96 ) ( -0.00 , -883.26 )
1 5 ( 0.00 , -16.51 ) ( 0.00 , -869.91 ) ( -0.00 , -351.62 )
1 6 ( 0.00 , -91.84 ) ( 0.00 , -5.33 ) ( -0.00 , 19.66 )
1 7 ( 0.00 , -2.39 ) ( 0.00 , -141.03 ) ( -0.00 , -70.48 )

状态混合:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
            E(cm-1)  Weight      Real         Imag     : Root  Spin  Ms
STATE 0: 0.00
0.99610 0.94204 0.32965 : 0 0 0
STATE 1: 20774.54
0.64085 0.35966 0.71519 : 1 1 0
0.01154 -0.04825 -0.09595 : 4 1 0
0.01206 0.04933 0.09810 : 9 1 0
0.03186 0.16645 0.06448 : 2 1 -1
0.03295 -0.05381 0.17335 : 3 1 -1
0.03337 -0.10929 -0.14639 : 5 1 -1
0.03657 -0.15165 0.11650 : 6 1 -1
0.01374 0.11174 0.03540 : 7 1 -1
0.01194 -0.03024 0.10500 : 8 1 -1
0.03186 0.04749 -0.17207 : 2 1 1
0.03295 -0.17125 -0.06018 : 3 1 1
0.03337 0.05234 0.17502 : 5 1 1
0.03657 -0.18395 0.05227 : 6 1 1
0.01374 0.03821 -0.11081 : 7 1 1
0.01194 -0.10233 -0.03833 : 8 1 1

The ground SOC state is still essentially the DFT ground state, as the energy differences are still high. However, the first SOC state is already a hybrid of many. It is not a simple triplet, but a mixture of T1 to T9, with various amounts and spin components. That shows the impact of the SOC on these cases!

The closest state to a singlet now is the SOC state 10:
which has 34% of S1 and 2% of S6, but there is nothing like a pure state anymore.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
STATE 10:  21813.90
0.34904 0.07012 0.58662 : 1 0 0
0.02377 0.01830 0.15309 : 6 0 0
0.06868 -0.26022 0.03111 : 4 1 0
0.02809 -0.16640 0.01989 : 9 1 0
0.01415 0.05254 0.10672 : 2 1 -1
0.01493 -0.10540 0.06177 : 3 1 -1
0.08208 0.11662 0.26169 : 5 1 -1
0.08432 0.26221 -0.12478 : 6 1 -1
0.03076 -0.11179 -0.13513 : 7 1 -1
0.02740 0.12544 -0.10801 : 8 1 -1
0.01415 -0.02591 0.11610 : 2 1 1
0.01493 0.11699 0.03518 : 3 1 1
0.08208 -0.05165 0.28180 : 5 1 1
0.08432 -0.28423 -0.05945 : 6 1 1
0.03076 0.07679 -0.15768 : 7 1 1
0.02740 -0.14737 -0.07540 : 8 1 1

ZFS and phosphorescence lifetime

This strong mixing is now reflected in the spectrum as well:

1
2
3
4
5
6
7
8
9
10
11
12
---------------------------------------------------------------------------------
SPIN ORBIT CORRECTED ABSORPTION SPECTRUM VIA TRANSITION ELECTRIC DIPOLE MOMENTS
---------------------------------------------------------------------------------
States Energy Wavelength fosc T2 TX TY TZ
(cm-1) (nm) (au**2) (au) (au) (au)
---------------------------------------------------------------------------------
0 1 20774.5 481.4 0.000013163 0.00021 0.00153 0.00311 0.01402
0 2 20836.2 479.9 0.003033212 0.04792 0.16473 0.14418 0.00118
0 3 20844.5 479.7 0.003563760 0.05629 0.15169 0.18239 0.00281
0 4 20990.7 476.4 0.000283714 0.00445 0.03702 0.05532 0.00437
0 5 20993.2 476.3 0.000109527 0.00172 0.01850 0.02990 0.02194
0 6 21011.1 475.9 0.000366203 0.00574 0.06107 0.04481 0.00074

之前的三重态-现在的SOC态-实际上与基态有着很明显的转变

The approximate zero-field splitting (ZFS), obtained as the energy difference between SOC state 3 and SOC state 1 is of about 70cm−170cm−1, in quite good agreement with the experimental value of 85−170cm−1
From the oscillator strengths it is also possible to predict the phosphorescence lifetime for these complexes, and the calculated value using Eq. 4 from the same reference, is about 1.17μs1.17μs, also close to the 1.6−1.8μs1.6−1.8μs from measurements.
Using a very simplistic approach, if one takes the energy difference from the S1S1 to the ground state and assumes a ZPE difference of 2000cm−12000cm−1, the expected emission color would be blue. Even using the T1T1 energy alone, it would be green, but not yellow enough. Now using the SOC state 1, the color at about 532nm532nm matches the yellow-green emission color of this complex quite well:
../_images/colors.png

SOC with other methods

The inclusion of SOC can be done through ORCA in many other theory levels such as CASSCF, ROCIS, STEOM and MRCI. The input is somewhat different, depending on the method, but the output in general is the same. For more detailed information on these other methods, please check the ORCA manual.

Structure

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
# fac-Ir(ppy)3 - C3 symmetry
C 3.393895879 -0.289566719 2.776304932
C 4.076284431 -1.374299959 2.244246939
C 3.562788518 -2.026286944 1.144617313
C 2.365194919 -1.600441421 0.563698783
C 1.656920791 -0.490717084 1.087023288
C 2.209908242 0.138316955 2.204838066
C 1.779556093 -2.262575837 -0.593808565
C 2.310998596 -3.397126504 -1.214621244
C 1.678633212 -3.946679457 -2.310344980
C 0.513725976 -3.353425417 -2.779039051
C 0.041132843 -2.238327622 -2.115943483
N 0.643735830 -1.703611386 -1.062120264
C -3.228320892 -2.843015891 2.244246939
C -1.947720074 -2.794416690 2.776304932
C -0.985168124 -1.982995155 2.204838066
C -1.253433856 -1.189576955 1.087023288
C -2.568620388 -1.248098174 0.563698783
C -3.536210228 -2.072321893 1.144617313
C -2.849226199 -0.409852865 -0.593808565
N -1.797238653 0.294314111 -1.062120264
C -1.959015004 1.083541724 -2.115943483
C -3.161014589 1.231812963 -2.779039051
C -4.257241276 0.519600723 -2.310344980
C -4.097497151 -0.302820240 -1.214621244
C -0.403486935 1.680294039 1.087023288
C -1.224740118 1.844678200 2.204838066
C -1.446175805 3.083983409 2.776304932
C -0.847963539 4.217315849 2.244246939
C -0.026578290 4.098608837 1.144617313
C 0.203425469 2.848539595 0.563698783
C 1.069670107 2.672428702 -0.593808565
C 1.786498555 3.699946745 -1.214621244
C 2.578608064 3.427078734 -2.310344980
C 2.647288613 2.121612454 -2.779039051
C 1.917882161 1.154785898 -2.115943483
N 1.153502823 1.409297275 -1.062120264
Ir 0.000000000 0.000000000 0.043448572
H 3.792342787 0.222162593 3.641507453
H 5.002872009 -1.707739869 2.689139743
H 4.102575829 -2.869480849 0.738507580
H 1.696641422 0.983426029 2.641159087
H 3.213678708 -3.847263406 -0.836341679
H 2.081671478 -4.823466100 -2.794933558
H -0.013921102 -3.747584685 -3.633027960
H -0.865398626 -1.751267403 -2.451342694
H -3.980382114 -3.478744318 2.689139743
H -1.703772945 -3.395346490 3.641507453
H 0.003351213 -1.961047587 2.641159087
H -4.536331226 -2.118194464 0.738507580
H -1.083942747 1.625090897 -2.451342694
H -3.238542989 1.885848371 -3.633027960
H -5.218079916 0.608952668 -2.794933558
H -4.938667199 -0.859495698 -0.836341679
H -1.699992635 0.977621558 2.641159087
H -2.088569843 3.173183897 3.641507453
H -1.022489895 5.186484186 2.689139743
H 0.433755396 4.987675313 0.738507580
H 1.724988490 4.706759104 -0.836341679
H 3.136408438 4.214513433 -2.794933558
H 3.252464091 1.861736314 -3.633027960
H 1.949341373 0.126176507 -2.451342694